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ABSTRACT

The doubling method is described for multiple scattering of light in plane-parallel atmospheres. The
polarization of the radiation and the azimuth dependence are correctly accounted for. The method is
practical for application to realistic simulations of clear, hazy and cloudy planetary atmospheres.

1. Introduction

Van de Hulst (1963) showed that if the solution is
known for multiple scattering from a plane-parallel
atmosphere of thickness 7, then this solution may be
used to obtain solutions for layers of thickness 279, 47y,
etc., by a “doubling” procedure. For the relatively
simple case in which the polarization of the light is
neglected, this doubling principle has been developed
and used, in one form or another, by van de Hulst and
Grossman (1968), Hansen (1969), Hansen and Cheyney
(1968), Hansen and Pollack (1970), Twomey et ol.
(1966), Irvine (1968) and Hunt and Grant (1969).

In this paper we extend the doubling method to a
rather general case in which the polarization of the light
is correctly accounted for. As in our previous paper
(Hansen, 1969), we begin the numerical computations
with a layer of such small optical thickness that the
scattering and transmission matrices are given to a high
accuracy by the phase matrix for single scattering. We
have, however, made some changes in the scheme for
writing down the doubling procedure in order to allow a
closer correspondence to the work of van de Hulst
(1963).

In Part II of this series (Flansen, 1971) we present
the results of computations for the reflection of sunlight
by terrestrial water clouds.

2. The doubling method

Consider a plane-parallel atmosphere of optical
thickness 7 illuminated uniformly from above by a
parallel beam of radiation. The incident beam may be
described by its Stokes parameters (Chandrasekhar,
1960; van de Hulst, 1957) which define a column
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vector of four elements
I
g‘:’ =rF, (1)
Vo

where I is the net flux per unit area of the incident
beam, and Qy, Uy and V, are simply related to the
degree of polarization, plane of polarization, and
ellipticity of the incident beam (Chandrasekhar, 1960).

Directions are specified by a zenith angle, §=cos™,
and an azimuth angle ¢, where 6 is measured from the
outward normal to the surface and we use only values
in the range 0°<0<90°(0<p< 1). Looking downward,
¢ is measured counterclockwise from an arbitrary but
fixed direction. The direction of the incident beam
is (ﬂ0)¢0)'

It is desired to find the Stokes parameters for the
light diffusely reflected and transmitted by the atmo-
sphere, i.e., 1,(0,u,¢) and L(r,ué), respectively; here
Iis a column matrix of four elements. It is convenient
to define reflection and transmission matrices, each
composed of four rows and four columns, such that

Hr(oxﬂ':d’) =F0R(T; Hy fo, ¢'—¢0)F: (2)
IS (77“7¢) =“0T(T; M, Ko, ¢—¢0) F- (3)

If R and T are multiplied by 4upu,, they become identi-
cal to Chandrasekhar’s S and T; these matrices as well
as Chandrasekhar’s satisfy symmetry relationships
(Hovenier, 1969).

Now we could write two long equations giving the
reflection and transmission matrices, R(27) and T(27),
for a layer of thickness 27, in terms of the corresponding
matrices R and T, for a layer of thickness =, as we did
in our previous paper (Hansen, 1969). Here, however,
we break up the equations following the scheme of van
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de Hulst (1963) by letting

Ql:R*R, (4)

Qn=QlQn—l, (5)

5= % 0, ©)

n=1
D=T4e"mS+ST, ™)
U=¢"=R+RD. (8)
Then

R27) =R U+ T+, )

T(27) = e /#D4-erT+TD. (10)

In (4)-(10) all of the matrices have four rows and
four columns; an arbitrary matrix of this type, say X,
stands for

X=Xﬁ(l-‘)#0)¢‘—¢0)y 1)]: 172;3:4’7 (11)
where i and j are the indices for the rows and columns,
respectively. The product of two matrices implies
matrix multiplication and integration over the adjoining

angles, an arbitrary Z= XY being defined as

Z (0,0 — o)

1 1 27 4
= —// [Z X% (u, u, d—¢") V¥ (i, po, ¢’—¢o)]
TJoJo k=1

Xu'du'dg'. (12)

R* and T* are the reflection and transmission
matrices for layers of thickness 7 when the layer is
illuminated from below. In general R*#R and T*#T,
but, since we are considering homogeneous layers, the
simple relations

1{*(/4'}:"‘0)(7S _¢0) = R(:“}“O;d’() _¢) )
T* (”'hu'07¢ _—¢0) = T(ﬂ:,U'O)d)O _¢) )

(13)
(14)

are valid (Hovenier, 1969).

D and U correspond, respectively, to the diffuse
radiation downward and upward at the mid-level of the
combined layer of thickness 27. The sum in (6) is over
the multiple reflections between the two layers of thick-
ness 7, # indicating the number of times the radiation
has crossed the middle boundary going up. In practice
this sum is terminated after some finite number of
terms, depending on the accuracy desired. Furthermore,
the omitted terms may be approximated by the geo-
metric formula because the ratio of successive terms
approaches a constant value, as was found previously
in the case in which polarization is neglected (van de
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Hulst, 1963 ; Hansen, 1969). Thus,
N1 Qx
S=~ 3% Qut—ry (15)
nes] 1 —1]
where
n= Q;\;/QNl—]—l) (16)

and N is a small integer (usually <35) taken as large as
accuracy requirements demand. As suggested by the
notation in (16) the ratio » depends on the matrix
element, but it does not depend significantly on angle;
hence it may be computed for convenient angles, say,
uw=puo=0.5.

3. Initial layer for computations

The above equations provide the reflection and
transmission matrices for layers of increasing thickness.
As indicated in our previous paper (Hansen, 1969), one
convenient way to begin the computations is with a
layer of such small optical thickness that multiple
scattering may be neglected in the starting layer. The
reflection and transmission matrices for single scattering
are given by:

Ri(73p, mo,d — o)

‘el =Gl

XP(u, po, d—g0), (17)
T1(7512, o, —b0)
@0 —7 —r
Lol el
XP(u, mo, p—0), if us=us, (18)

T (75, o, d—b0)
@t -7 .
= exp[—:IP(ﬂ, Ko, o), if u=p,. (19)
4uo? Mo
Hence for a very thin starting layer, 7¢&1, we may take

R(7o;u, o, ¢ —o0)

@oto To/1

1
- 1 ——<—+—>:|P (4, 1o, 9—0), (20)

dupo  2\u wo

T (70;“7 M0, ¢ —¢0>

@oTo o/l 1
_ [1——<—+'*>:|P(M,#o,¢“¢o), (21)

Appo 2\u o

where P(u, o, d—¢o) is the phase matrix referred to
the meridian plane, which is the plane containing the
direction of emergence (u,¢) and the local normal, P is
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normalized such that its integral over all directions is
equal to 4r (Hansen, 1971).

The phase matrix is usually known with reference to
the scattering plane as a function of the total scattering
angle for single scattering, a, where

cose=kupot (1 —p) (1 —puo2)? cos(p—ao), (22)
where the plus sign applies for transmission and the
minus for reflection. As shown by Chandrasekhar
(1960), the phase matrix as a function of (g, wo, ¢—¢o)
may be obtained by pre- and post-multiplying P(a) by
appropriate rotation matrices. Since we are working
with the Stokes parameters given in (1), this trans-
formation has the form

1 0 0 0
_ |0 cos2iy —sin2iy O
P, 10,0 — o) = 0 sin2i, cos2iy, O
0 0 0 1

1 0 0 0

0 cos2i;, —sin2i; O

XP(a) 0 sin2i;  cos2i; Of 23)
0 0 0 1

The rotation angles 7, and s, may be derived from the
spherical geometry in several different ways (Chandra-
sekhar, 1960 ; Hovenier, 1969) ; we use the relations

(1 —ue?)t—no(l—p?)? cos(p—eo)

COsty= , (24
" (1 —cos?a) 24
1—uFu(l—pd)? cos(p—
COSiZ:uc( pNIFu(l—pd)! cos(ep ¢o)' 25)
(1 —cos®a)}

Egs. (24) and (25) are valid for 0<¢—¢o<m; the upper
signs apply for transmission and the lower signs for
reflection. For the special case p=po=1 we may use
cosiy= —cos(¢p—¢o) and cosiy=1 for both transmission
and reflection.

When only single scattering is included in the
starting layer, 7o should be ~2720 depending on the
accuracy demanded. The doubling may, however, be
started at any 7, for which R(#) and T(7,) are known.
Since there are a number of computing methods which
are satisfactory for optical thicknesses <1, one of these
may be employed to obtain R(7¢) and T(ro); this may
save many doublings at the expense of added program-
ming complexity.

4. Fourier series expansion

It is advantageous to expand the azimuth-dependent
functions in Fourier series in ¢—¢q. Each term in the
Fourier series may then be treated independently,
allowing large savings in computer storage requirements.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 28

Furthermore, the physical behavior of different Fourier
terms differs markedly (van de Hulst, 1971; Hansen
and Pollack, 1970), and this may be used to reduce the
computing time (Hansen and Pollack).

Let X be any of the matrices in (4)-(10); we may
expand it as!

Xij(#y Mo, ¢_¢0) ZO‘YCH(”;MO)

23 DX o) cosm (— i)

m=1 |
+meij(:u'y,U'0>5in m(¢~¢0)]) (26)
where
1 27
X (o) =— / X (p, no, ') cos me'dgy’,
2r Jo
m=0;1)27' ) (27)
1 2
meij(ﬂy ﬂ-o) =, / Xij(“y Mo, ¢/) sin m¢,d¢/’
27 Jo
m=12,---. (28)

The rule for matrix multiplication, given by (12),
becomes

07 1 (u,m0) =2 /

0

1 4

200X (Y i po)w'dy’,  (29)
=1

1 4
’"Zcij(#;ﬂo)=2/ { > (X ()Y R (1 o)
o L=

—mxs%,uommkf(ucuo)]}u'dm, (30)

1 4

stii(ﬂ,ﬂo)zzf { Z [mXcik@,ﬂ/)myskj(M/,”O)
0 =1
+”Xa”°(#,#’)’"Yc’”(u’,uo)]}u’d/u’- (31)

Each of (4)-(10) hence represents three equations.

In (30) and (31) #> 1. While the case m=0 could be
included in (30), with (29) omitted, it is worthwhile to
program this azimuth-independent term separately.
The azimuth-independent term behaves “conserva-
tively;” i.e.,  in (16) approaches unity as = approaches
infinity for the case &o=1. Therefore, this term is
sensitive to small errors, due, e.g., to the truncation in
(15) or the replacement of integrals by finite summa-
tions, and it must be treated with greater care to obtain
an accuracy consistent with that of the higher Fourier
terms.

The matrices R* and T* do not need to be explicitly
calculated because, according to (13), (14) and (26),

1 A misprint occurs in Eq. (10) of our earlier paper (Hansen,
1969). There the factor 1/(2—8o,m) should read (2—8¢,m)/27. The
correct equation was used in computations reported there and in
other papers.
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they differ from R and T only in the sign of the sine
coefficients in the Fourier expansions; thus,

"R * (u o) = "R (u o)
T ¥ (yp0) =™T 6% (i, a0)
™R ¥ (o) = — ™R (u,ha0)

"% (o) = — "1 s* (u,ht0)

}, m=071727"') (32)

}, m=1,2,---. (33)

We have made computations only for the special case
in which the elements of the 4 by 4 phase matrix,
Pii(u,uo,p—eo), are even functions of ¢—¢o for the
2 by 2 submatrices (ij=11,12,21,22) and (ij=33,34,
43,44), and odd functions of ¢—g¢, for the submatrices
(15=13,14,23,24) and (¢j=31,32,41,42); the even func-
tions in ¢—¢o contain cosine terms only and the odd
functions contain sine terms only. This special case
includes Rayleigh scattering and anisotropic Rayleigh
scattering, as well as scattering by spherical particles
and scattering by randomly oriented nonspherical
particles which have a plane of symmetry (Hovenier,
1969). From (17)-(19) and the doubling equations, it is
clear that if P has this special form, all of the 4 by 4
matrices above will have it. In this case (27) and (28)
simplify to

1 T
mXCij(ﬂ'yl‘o) =_/ Xij(/‘taﬂﬂyqs,) cosm¢'d¢',
0

™

m=0: 172 B (34)
1 T
mXBH(/"yI"O) =—/ Xij(/'trﬂo;d)/) Sinm¢ld¢1y .
]

The integrations in (29), (30), (31), (34) and (35) may
be performed numerically; we have used Gauss quad-
rature. This integration method is the most efficient of
the numerical schemes which we have tested for these
integrations and it has the additional modest advantage
that it does not employ the endpoints of the integration
interval; thus, the special cases ¢ —¢o=0 and = need
not be programmed for (24) and (25) because the phase
matrix is not needed for those angles.

It is worthwhile to compare the above equations to
those which result if polarization is neglected; by the
phrase “polarization is neglected” we refer to the case
in which an approximate value for the intensity is com-
puted by treating it as a scalar independent of the other
Stokes parameters. This approximation is often em-
ployed when only the intensity, and not the other
Stokes parameters, is desired; it is very accurate for
scattering by particles having a mean size at least on
the same order as the wavelength (Hansen, 1971). In
this approximation the matrices and vectors in the
preceding equations are replaced by scalars; the phase
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matrix becomes the phase function which is equal to the
matrix element in the first row and first column of the
phase matrix. No transformation of the phase function,
such as that indicated by (23) for the phase matrix, is
necessary because the intensity is invariant for a rota-
tion of the coordinate axis; i.e., P(u, po, ¢ —¢o) =P (a).
For scalars the summations over & in (12), (29), (30)
and (31) reduce to one term.

If, further, the phase function is an even function of
¢—dq, as is true in the case for which we have made
computations, then all of the sine coefficients (X,, ¥,
etc.) are zero; thus, (30) may be simplified and (31)
may be dropped. The difference between illumination
from above and illumination from below then dis-
appears, as indicated by (32), and the asterisks may be
omitted from the doubling equations (4)-(10).

5. Discussion

In Part II (Hansen, 1971) we will illustrate that it is
practical to use the doubling method on problems
involving highly asymmetric phase matrices typical of
planetary atmospheres; it is not difficult to obtain
accuracies comparable to or better than those obtained
observationally (two or three significant figures).

There are a number of other computational methods
which have been successfully used for multiple scatter-
ing in planetary atmospheres, some including polariza-
tion, and a comparison of some of these to the doubling
method is in order.

Chandrasekhar (1960) used an ad hoc method based
on mathematical brilliance to force a solution to the
problem of Rayleigh scattering. The solution depended
on functions of only a single angle (“H functions,” etc.) ;
hence the method was tractable for small computers.
It has not yet been shown that a practical extension of
this approach can be made to problems involving a
more general phase matrix such as that occurring for
spherical particles.

The Monte Carlo method, used most prolifically by
Kattawar and Plass (1968), is versatile and provides a
tractable approach to a number of problems, including
some problems involving unusual geometries. It is use-
ful for more standard problems, such as that of a plane
parallel homogeneous atmosphere, if a high accuracy is
not demanded. A disadvantage of the Monte Carlo
method is that it yields the intensity and polarization
averaged over angular intervals, usually several degrees
in width; the angular intervals may be reduced in size,
but at the expense of a still lower accuracy or an increase
in computer time. Hence it may be difficult for the
Monte Carlo method to extract the full information
available in precise polarization observations, par-
ticularly for optically thick atmospheres.

Dave (1970) has recently published polarization
calculations made with the Gauss-Seidel iteration
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scheme which was used previously by Herman (1965).
Dave has succeeded in getting a reasonable accuracy
(usually ~2 significant figures) for multiple scattering
by monodisperse Mie particles; the method can also be
used for polydispersions. The method can be reliable for
a layer of moderate optical thickness (r<5-10). By
itself it cannot be practically used in calculations for
scattering by thick clouds such as those typically
occurring on Earth and on Venus.

Calculations in successive orders of scattering are
very advantageous for some problems, particularly
absorption line formation. In the classical method
[that used, e.g., by Dave (1964)], integrations over
optical depth, as well as integrations over angle, must
be performed for each order of scattering; hence the
method is limited to moderately thick layers (r<5-10).
Uesugi and Irvine (1969) have introduced a new and
important method for computing successive orders of
scattering in a semi-infinite homogeneous layer; their
method involves integrations only over angle and it is
capable of a high accuracy. However, if the method of
Uesugi and Irvine is extended to include polarization,
it takes a great amount of computer time and storage
(machine memory) space when the single scattering
albedo is close to unity.

The “invariant imbedding” method has been used
by Bellman ef al. (1966), Adams and Kattawar (1970),
and others. The method involves numerically solving
nonlinear integro-differential equations for the reflection
and transmission matrices; physically this amounts to
repeatedly adding thin layers to the atmosphere. The
method is hence well suited for application to an in-
homogeneous atmosphere; it is computationally stable
unless both @y=1 and 7— . However, the computer
time is nearly proportional to the optical thickness, and
hence with a general phase matrix the method would be
practical only for a thin layer.

Abhyankar and Fymat (1970a,b,c) have developed a
perturbation method for multiple scattering and they
have successfully used it for isotropic and Rayleigh
scattering. It remains to be demonstrated that this
method can be practically used for problems involving
general phase matrices.

Most of the computational methods presently used
for multiple scattering by planetary atmospheres, as
suggested by the above, encounter difficulties for the
common case of a thick but finite planetary atmosphere.
In the doubling method the optical thickness increases
geometrically, and hence, as indicated by van de Hulst
and Grossman (1968), the method is well suited for
thick layers. Our calculations (Hansen, 1971) demon-
strate that the doubling method is useful for many
practical computations.

The doubling equations, as we have presented them,
are valid for homogeneous atmospheres. With obvious
modifications the same method may be used to add two
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dissimilar layers, and hence to build up an inhomo-
geneous atmosphere. However since this adversely
affects a primary advantage of the doubling method,
i.e., its computing speed, it will be difficult to effectively
use the method for an atmosphere composed of many
different layers.

With the doubling method the computer time re-
quired to obtain a given accuracy increases significantly
as the phase matrix becomes more strongly dependent
on the scattering angle ; this happens, for example, when
larger particles are considered. The same difficulty
occurs, to a greater or lesser extent, in all of the multiple
scattering methods discussed above. Therefore, in the
case of scattering by large particles, it is important to
take advantage of shortcuts in the numerical work;
some suggestions are given by Hansen and Pollack
(1970). Further discussions for the case of polarized
light will be given in future publications.

Note added in proof. Howell and Jacobowitz (1970)
have recently published computations for Rayleigh
scattering made with their version of the doubling
method. Their results, obtained for 7<%, are no more
accurate than those obtained by Collins (1968) with
the Monte Carlo method; this represents an apparent
contradiction to our statements above. Actually the
doubling method, in the form described in this paper,
can easily yield accuracies of 4-5 significant digits for
Rayleigh scattering; this is true even in the most diffi-
cult case, (@=1, 7 —), as indicated by comparisons
to Chandrasekhar (1960) and Abhyankar and Fymat
(1970c). It appears that Howell and Jacobowitz (1970)
did not correctly handle the azimuth dependence. They
do not mention the necessity for distinguishing between
illumination from above and illumination from below
[Eqgs. (13), (14), (32) and (33)]; these equations are a
statement of the fact that R and T for a homogeneous
atmosphere are the same for illumination from below
as for illumination from above only if, relative to a
fixed coordinate system, the azimuth angle is reckoned
in opposite senses in the two situations. That this dis-
tinction is necessary even for homogenous atmospheres
was shown by Hovenier (1969). The notation for the
azimuth dependence in the present standard text
(Chandrasekhar, 1960) is, in the most generous inter-
pretation, ambiguous; this may have increased the
probability for errors.
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